

Learning Objectives

- Fluid dynamic framework:
 - Understand mass and momentum conservation equations
 - Vortex flow: Velocity and pressure fields (Free vortex, Rankine model)
 - Boundary layer: Describe the different states of a boundary layer
- Basic flows:
 - Understand and express head losses (regular and singular) in a hydraulic system
 - Know how to use Moody diagram for circular pipes
 - Poiseuille flow: Hypothesis – Analytical solution of the velocity field
 - Flow around a profiled body:
 - Define the pressure, lift and drag coefficients
 - Draw typical pressure evolution on suction and pressure sides
 - Draw typical Lift and Drag coefficients vs incidence angle
- Energy conservation:
 - Bernoulli equation along a streamline:
 - Application in simple cases (e.g. Siphon, Venturi, Toricelli flows, ...)
 - The case of a flow around a profiled body
 - Understand the specific energy balance in hydraulic turbines and pumps
- Types of hydraulic turbines:
 - Explain the difference between action and reaction turbines
 - Name the most common types of hydraulic turbines and describe the role of their main components
 - Understand the meaning of the specific speed
- Cavitation in hydraulic machines:
 - Define the cavitation phenomenon: Incipience, types, effects, ...
 - Express the condition of cavitation occurrence in a flowing liquid in dimensional and non-dimensional ways
 - Describe the collapse of a spherical bubble in an infinite liquid volume and explain the erosion mechanism
- Similarity rules for turbomachines:

- Draw the velocity triangle and explain its role in flow similarity
- Euler equation: Understand its meaning
- Describe the benefits and limitations of model tests
- Understand the role of Reynolds, Froude and Thoma numbers
- Be able to formulate and evaluate these numbers in a specific case
- Pelton turbines:
 - Derive the force due to an impinging jet on a curved surface
 - Explain the main causes of erosion in Pelton turbines
- Centrifugal pumps:
 - Describe the working principle and the role of main components
 - Differentiate between radial, mixed and axial pumps
 - Understand the Euler equation in the case of centrifugal pumps
 - Use non-dimensional parameters to predict the performance of a pump, using model test data